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ABSTRACT: A diversity-oriented syntheses by coupling
three electron-deficient olefins (vinyl sulfonamides, methacry-
lamides, and methyl acrylates, respectively) with aryl aldehydes
via C(sp2)−H functionalization were reported. These reactions
gave four different skeletal products respectively under
environment-friendly and mild conditions. All these reactions
are highly regioselective and effective, very suitable for the
preparation of synthetic building blocks and compound library,
the results will enrich current coupling chemistry of olefins
with aldehydes and can be applied to other chemistry areas as
well.
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The oxidative cross coupling of activated aldehyde Csp2−H
bonds with another Csp2−H bond has attracted a lot of

recent attention,1 because these reactions involve C(sp2)−H

functionalization. They generate versatile synthetic substrates
which are very useful for the preparation of natural products
and compound library.2 Normally these reactions are atom-
economic and highly efficient.3 The coupling reaction between
olefins and aldehydes is especially desirable and valuable for
forming carbon−carbon bonds important for constructing
molecular skeletons and synthetic building blocks,4 due to the
ready availability of both reagents, especially aldehydes.
Recently, some progress in this quest has been achieved,
where aldehyde C(O)−H bonds have been activated for
coupling reactions with electron-rich olefins Csp2−H bonds to
afford ketones.5 Despite this initial progresses,6 reactions of
electron-deficient olefins with the aldehyde C(sp2)−H bonds
have great potential for further development of space and
exploration.
Reports exist where aldehydes and electron-rich phenyl-

substituted electron-rich olefins were used for oxidative
coupling reactions.7 However, only a couple of reports of
coupling reactions between aldehydes and electron-deficient
olefins were reported.5a,b We have recently communicated an
initial report of cascade cross coupling via C(sp2)−H
functionalization to form carbon−carbon bonds from aldehydes
and electron-deficient methacrylamides.7c We now expand this
chemistry by using another two electron-deficient olefins (vinyl
sulfonamides and methacrylates), and different unexpected
structures of products are obtained in good yields.
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Table 1. Oxidative Coupling of N,N-Diethyl Vinyl
Sulfonamide with Benzaldehydea

entry
catalyst
(mol %) oxidant solvent

reaction time
(h)

yield
(%)b

1 CuBr2 (20) O2 10
2 CuO (20) TBHP 10 70
3 CuI (20) TBHP 10 trace
4 CuCl2 (20) TBHP DCE 10 trace
5 CuCl2 (20) TBHP dioxane 10 trace
6 CuCl2 (20) TBHP toluene 10 10
7 CuCl2 (20) TBHP CH3CN 10 trace
8 CuCl2 (20) TBHP DMF 10 trace
9 CuCl2 (10) TBHP 10 65
10 CuCl2 (20) DTBP 10
11 CuCl2 (20) TBHP 10 73
12 CuCl2 (20) DTBP 10
13 TBHP 10 70

aReaction conditions: benzaldehyde (3.5 equiv), vinyl sulfonamide (1
equiv), aqueous TBHP [tert-butyl hydroperoxide 70 wt % in water (2.5
equiv)], copper catalyst (10 mol %, or 20 mol % of 2a). bIsolated yield
is based on reactant 2a, DTBP = di-tert-butyl peroxide.
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Reaction conditions were screened to search for suitable
oxidative coupling results between the electron-deficient olefins
and aryl aldehydes. Benzaldehyde and N,N-diethyl vinyl
sulfonamide were selected as representative reactants for
screening, and various catalysts, solvents, reaction times (h)
and yields were screened. On the basis of previous research,8

metal catalyst screening focused mainly on copper systems
which had proved to be good for promoting oxidative coupling
of aldehydes with other nucleophiles or aromatic Csp2−H
bonds to form new C−C bonds.9 But some reactions without
metal catalysts were also screened. Example screening results
are presented in Table 1.
Screening reactions between benzaldehyde and N,N-diethyl

vinyl sulfonamide10 (Table 1), demonstrated that excess
benzaldehyde (3.5 equiv) and aqueous TBHP (2.5 equiv,
70% in water as an oxidant) promoted conversion to N,N-
diethyl-3-oxo-phenylpropyl-1-sulfonamide 3a. When CuBr2 or

CuI, (20% mol) were used as catalysts in the absence of solvent
(entries 1, 3), none or only trace amounts of product 3a was

Table 2. Addition of Aromatic Aldehydes to N,N-
Disubstituted Vinyl Sulfonamides via C(sp2)−H
Functionalizationa

aReaction conditions: benzaldehyde (3.5 equiv), vinyl sulfonamide (1
equiv), aqueous TBHP [tert-butyl hydroperoxide 70 wt % in water (2.5
equiv)]. bIsolated yield is based on reactant 2.

Table 3. Oxidative Cross Coupling Cascade Reactions of N-
alkyl-N-phenylmethacrylamide 4a−c with Aryl Aldehydesa

aReaction conditions: aldehyde (3.5 equiv), N-alkyl-N-phenylacryla-
mide (1 equiv), aqueous TBHP (70 wt % in water, 2.5 equiv), copper
catalyst (20 mol % of 4a−c). bIsolated yield is based on reactant 4

Scheme 1. Oxidative Coupling of N,N-
Diethylmethacrylamide 6 with Aryl Aldehydes
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detected. Surprisingly, using CuO gave about 70% yields of 3a.
Using DCE, dioxane, CH3CN or DMF as solvents (entries 4, 5,
7, 8) with CuCl2 as a catalyst did not afford any 3a or only
produced trace amounts of this product. In toluene (entry 6),
the reaction generated only a 10% yield of 3a. Employing
CuCl2 (10% mol) in the absence of organic solvent (entry 9)
unexpectedly gave 3a in 65% yield after 10 h. Increasing the
amount of CuCl2 to 20% mol without solvent (entry 11)
increased the yield of 3a to 73%. When no catalyst was used,
the reaction still proceeded well. After 18 h, a 70% yield was
observed. On the basis of the screening results, we found the
reactions with CuCl2 as a catalyst were not different from the

ones without CuCl2 catalyst, so both reaction conditions were
used respectively for the following coupling reactions.
Eight couplings with different vinyl sulfonamides were

investigated at the selected conditions. All gave N,N-dialkyl-3-
oxo-3-arylpropyl-1-sulfonamides in good yields (Table 2). The
coupling chemistry between electron-deficient vinyl sulfona-
mides and aldehydes was extended to methacrylamides.
Interestingly, when the vinyl sulfonamides were replaced by
N-alkyl-N-phenylamide groups, the couplings proceeded as
cascade reaction sequences where initial Csp2−H/Csp2−H
coupling was followed by intramolecular cyclization. Instead of
giving linear skeletal products analogous to 3a−h, these cascade
reactions gave ketone oxindole derivatives 5a−i in moderate
yields (Table 3). The electron-withdrawing 2-nitrobenzalde-
hyde was also tried for the reactions with N,N-diethyl vinyl
sulfonamide and N-methyl-N-phenylmethacrylamide as de-
scribed in Tables 2 and 3, respectively, but we found that
both reactions did not proceed well affording low yields of
corresponding products.
When N-alkyl-N-phenylamide group of methacrylamide 4

was replaced by N,N-dialkyl amide group, this coupling reaction
could not undergo cascade cyclizations. Instead, linear coupling
occurred similar to that with the N,N-disubstituted vinyl
sulfonamides. However, the original methacrylamide double
bond was still retained in each of the coupling products when
N,N-dialkylamides were employed (Scheme 1). Here N,N-
dialkyl methacrylamide was used as a representative reactant.
Both p-methylbenzaldehyde and p-methoxybenzaldehyde re-
acted well with N,N-diethyl methacrylamide, respectively, to
give N,N-diethyl-2-methyl-4-oxo-4-arylbut-2-enamides 7a, 7b in
good yields.(Scheme 1)

Scheme 2. Oxidative Cross Coupling of Methyl Methacrylate
with Aryl Aldehydes

Scheme 3. Proposed Reaction Mechanisms for the Couplings of Vinyl Sulfonamides, Methacrylamides, and Methacrylates with
Aryl Aldehydes
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These couplings were further extended to using methyl
methacrylate as the electron-deficient reactant. Methacrylate is
a representative electron-deficient ester, p-methylbenzaldehyde,
p-methoxybenzaldehyde and m-nitrobenzaldehyde were em-
ployed as representative aryl aldehydes to react with methyl
methacrylate (Scheme 2). In the absence of metal catalysts,
these coupling reactions proceeded well to give good yields of
corresponding products 9a−c in aqueous TBHP. These
reaction products differ from the couplings shown in Scheme
1, because they do not retain the electron-deficient double
bond as found in coupling products of 7a−b. Instead, a single
carbon−carbon bond exists at this position, 1H NMR and mass
spectroscopy verified that there is an OH function present in
these products. This was also confirmed by IR analysis, which
showed a strong absorption at 3200−3400 cm−1, indicating the
existence of an OH group at the α-positions of 9a−c ester
functions.
How do these three different but similar electron-deficient

olefin substrates (vinyl sulfonamides, methacrylamides and
methacrylates) generate three different types of products? On
the basis of previous reports and these new results, a reaction
mechanism consistent with the products is proposed in Scheme
3. First TBHP is split by heating to give t-BuO• and HO•

radicals, which can also abstract hydrogen from t-BuOOH to
give t-BuOO• radical. The t-BuO• radical abstracts hydrogen
from the aryl aldehyde to generate the acyl radical. The acyl
radical adds to the β-position of the double bond of vinyl
sufonamides to give radical intermediate 11, which sub-
sequently abstracts a hydrogen atom from t-BuOOH to give
product 3a−h. With methacrylamides, the acyl radical adds to
the electron-deficient olefin to generate intermediate radical 12.
This loses a hydrogen atom at the amide’s β-position to give
N,N-diethyl-2-methyl-4-oxo-4-arylbut-2-enamides 7a/7b.
When R2 is aryl, the intermediate radical 12 attacks the aryl
ring of aniline substrate, followed by the abstraction of aryl
hydrogen by TBHP to give products 5a−i in moderate yields.
The intermediate radical 13 from methyl methacrylate
combines with a t-BuOO• radical from TBHP to give
intermediate 14, which undergo subsequent reduction through
O−O bond cleavage to give the α-hydroxy ester 9a−c in good
yield. The radical 12 could take the same route as radical 13,
dehydration of the analogous α-hydroxy product from 12 under
driving reaction conditions could also provide 7a/b. The reason
why the three intermediate radicals 11, 12, 13 took different
reaction routes may be related to their lifetimes and reactivity.
In summary, a diversity-oriented syntheses by coupling three

electron-deficient olefins (vinyl sulfonamides, methacrylamides
and methyl acrylates, respectively) with aryl aldehydes via
C(sp2)−H functionalization were reported. These three
reactions gave four different skeletal products, all these
reactions are atom-economical, effective and highly selective,
These results have enriched the coupling chemistry of olefins
with aldehydes, providing more green and powerful strategies
for the syntheses of molecular building blocks which can be
used for compound library production and syntheses of
different pharmaceutical molecules in the future.
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